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Abstract

The stability of plane parallel convective motion in pure water close to its temperature of maximum density is

studied. A layer of ice at its melting temperature is assumed to be contained in an inclined slot with a movable sidewall.

The convective motion is induced by uniformly distributed heat sources in the layer. The stability boundary depends on

the angle of inclination and velocity of the sidewall. In general lower and moderate positive values of Re and moderate

and higher negative values of Re stabilize convection. The competition between the thermal-buoyant, interactive and

shear modes of instability is prominent when �76Re6 10. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

An important type of natural convection arises in the

presence of heat sources. This type of natural convection

in a vertical slot has even velocity and temperature dis-

tribution and so differs considerably from that induced

by differential heating. The instability in this case de-

velops in the form of a system of eddies at the bound-

aries between convective counterflows. For low Prandtl

numbers, the hydrodynamical nature of opposing con-

vective flows is the cause for instability of basic state in a

vertical slot. As the Prandtl number increases, the situ-

ation becomes dangerous because of the amplification of

disturbances into thermal running waves [1]. This situ-

ation depends much on the Prandtl number. On the

other hand thermal factors are the most dangerous when

the slot is in the horizontal position. Both the above

mechanisms are present when the slot is neither aligned

nor normal to the gravity.

Stability of a flow driven by combined shear and

buoyancy forces is relevant to many industrial and

manufacturing processes such as reactor core, extrusion,

drawing, etc. Many geophysical phenomena like motion

in between earth’s tectonic plates are maintained by

buoyancy forces, strongly modified by the coexisting

shear. If the Reynolds number is large enough and the

shear flow is of Poiseuille or mixed Couette–Poiseuille

type, a hydrodynamic instability of the shear flow itself

can interact with the thermal instability [2]. In this case

the marginal curve may have a double minima, one

corresponding to each mode of instability. Chen and

Hsieh [3] considered the stability of natural convection

in a differentially heated vertical slot with a moving

sidewall. Their results showed the critical Prandtl num-

ber which marks the transition between shear and

buoyant modes is strongly dependent on the direction

and speed of the sidewall movement. Chen and Chung

[4] have given a detailed review on the mixed convection

instability in a vertical channel. Chen and Chung [5]

concluded that the existence of multiple local minimum

wavenumbers are responsible for the sudden jumps of

the critical wavenumber and shift of instability type for

high Prandtl number fluids. The growth of a double

minimum neutral curve because of the magnetic field

was also reported by Kolyshkin [6]. Rogers and Yao [7]

studied the different types of instability mechanisms that

occur during mixed convection, with special reference to

the effect of Prandtl number.

The aim of this study is to understand the process of

ice melting. Unlike most of the fluids that possess
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monotonic linearly decreasing density–temperature re-

lationships, water exhibits a non-linear density variation

with a maximum at 4�C (more exactly 3.98�C) at at-

mospheric pressure. This anomalous behaviour of den-

sity behaviour greatly affects the freezing of the upper

surface of water bodies supporting marine ecology. El-

Henaway [8] made a stability analysis in water near its

density maximum in the region of buoyancy force re-

versal. Convective stability of water lying between two

vertical plates of different temperatures near its maxi-

mum density was first studied by Hassab and Sorour [9].

Farhadieh and Tankin [10] studied the effect of con-

vective current on the ice–water interface, with different

salinity concentrations. Other works in fluids with non-

linear density include those of Gebhart and Mollendorf

[11], Spatz et al. [12], Blake et al. [13] and Merker et al.

[14]. Motivated by the above factors, this study con-

siders the linear stability of natural convection generated

by internal heat sources in water in the neighbourhood

of its density maximum.

2. The equations

Let us consider a slot containing two infinitely long,

parallel sidewalls of distance 2h (Fig. 1(a)) enclosing ice

at its melting temperature 273.15 K (¼ 0�C). The tem-

perature of both walls are always kept at 273.15 K. The

density–temperature relationship for water is assumed to

be (see [15] and Fig. 1(b))

q ¼ q0ð1þ b1T
� þ b2T

�2 þ b3T
�3 þ b4T

�4Þ; ð1Þ

where q0 ¼ 999:8396 is the density of water that occurs

at the reference temperature 273.15 K, b1 ¼ 0:6814493�
10�4, b2 ¼ �0:9160979� 10�5, b3 ¼ 0:1109033� 10�6

and b4 ¼ 0:1864194� 10�8. The heating is initiated by

internal heat sources of uniform volume density Q dis-

tributed uniformly through the volume. It is assumed

that the temperature produced by Q is at most 277.15 K

(¼ 4�C). As a result the solid ice is transformed into

water. For small thickness of h, a laminar parallel flow is

developed as a result of density difference in the fluid.

The slot is inclined to the vertical at an angle a which is

positive in the clockwise sense. The left sidewall is

moving up at a constant velocity u0. We choose a Car-

tesian coordinate system, where the x- and z-axes are

normal and parallel to the plates. The origin of the co-

ordinate system is located in the midplane of the slot.

The equations governing the motion of a viscous in-

compressible fluid in the above configuration with the

Boussinesq approximation are

ðo=ot�Þv� þ ðv� � r�Þv�

¼ � ð1=qÞr�p� þ mðr�Þ2v� þ ½ð�1Þjb1T
� � jb2T

�2

� jb3T
�3 � jb4T

�4�gn; ð2Þ

ðo=ot�ÞT � þ ðv� � r�ÞT � ¼ jðr�Þ2T � þ ðQ=qcpÞ; ð3Þ

div v� ¼ 0; ð4Þ

where j ¼ 1 for water and 0 for fluids with linear density

variation.

We introduce the non-dimensional variables x ¼
x�=h, z ¼ z�=h, t ¼ t�=ðh2=mÞ, v ¼ v�=ðgb1qh

4=2mÞ, p ¼

Nomenclature

cp specific heat capacity

g acceleration due to gravity

Gr Grashof number

h half slot width

j ¼ 1 for water¼ 0 for fluids with linear

density variation

k wavenumber

k unit vector in the z direction

n number of collocation points

n vertical unit vector pointing upwards

p pressure

Pr Prandtl number

q ¼Q=ðqcpjÞ
Q volume density of internal heat sources

Re Reynolds number

t non-dimensional time

T non-dimensional temperature

u0 dimensional velocity of the moving side wall

v non-dimensional velocity vector

x coordinate axis normal to the slot

z coordinate axis parallel to the slot

Greek symbols

a angle of inclination of the slot

b coefficient of thermal expansion

gi ¼ biþ1q
ih2i=ðb12

iÞ; i ¼ 1; 2; 3
j thermal diffusivity

k complex eigenvalue

m kinematic viscosity

q density

W non-dimensional stream function

r Laplacian operator

Superscripts

* dimensional quantity

(i) ith derivative

Subscripts

c critical state

0 basic state
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p�=ðqgb1h
3=2Þ, T ¼ T �=ðqh2=2Þ. Let Gr ¼ gb1qh

5=2m2 be
the Grashof number, Re ¼ u0h=m the Reynolds number,

Pr ¼ m=j the Prandtl number and q ¼ Q=ðqcpjÞ. In di-

mensionless variables, Eqs. (2)–(4) become

ðo=otÞvþ Grðv � rÞv
¼ �rp þr2vþ ½ð�1ÞjT � jg1T

2 � jg2T
3 � jg3T

4�n;
ð5Þ

ðo=otÞT þ Grðv � rÞT ¼ ð1=PrÞr2T þ q; ð6Þ

div v ¼ 0; ð7Þ

where

gi ¼
biþ1q

ih2i

b12
i

ði ¼ 1; 2; 3Þ;

v, T , p and n are, respectively, the velocity of the fluid,

temperature, pressure and vertical unit vector. We seek a

steady plane parallel solution for Eqs. (5)–(7) of the

following type:

v ¼ ½0; 0; v0ðxÞ�; T ¼ T0ðxÞ; p ¼ p0ðzÞ: ð8Þ

The flow (8), may be realized in the middle portion of a

sufficiently long vertical layer of fluid where the end ef-

fects are negligible. Substituting (8) into (5)–(7) leads to

the system

d2v0=dx2

¼ C þ ð
h

� 1Þjþ1T0 þ jg1T
2
0 þ jg2T

3
0 þ jg3T

4
0

i
cos a;

ð9Þ

Fig. 1. (a) Physical schematic. (b) Non-linear density behaviour of water. (c) Basic velocity profiles for j ¼ 1 and a ¼ 0�.
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d2T0=dx2 ¼ �2 ð10Þ

subjected to the boundary conditions

v0ðþ1Þ ¼ 0; v0ð�1Þ ¼ Re=Gr; T0ð�1Þ ¼ 0: ð11Þ

The solution at the basic state is given by

v0ðxÞ ¼ Cðx2 � 1Þ=2þ Re=ð2GrÞ þ C1 � Rex=ð2GrÞ
þ C2x2 þ C3x4 þ C4x6 þ C5x8 þ C6x10; ð12Þ

T0ðxÞ ¼ 1� x2; ð13Þ

where

C1

¼ ð�ð1þ g1 þ g2 þ g3Þ=2þ ð1þ 2g1 þ 3g2 þ 4g3Þ=12

� ðg1 þ 3g2 þ 6g3Þ=30þ ðg2 þ 4g3Þ=56� g3=90Þ cos a;

C2 ¼ ðð1þ g1 þ g2 þ g3Þ=2Þ cos a;

C3 ¼ ð�ð1þ 2g1 þ 3g2 þ 4g3Þ=12Þ cos a;

C4 ¼ ððg1 þ 3g2 þ 6g3Þ=30Þ cos a;

C5 ¼ ð�ðg2 þ 4g3Þ=56Þ cos a;

C6 ¼ ðg3=90Þ cos a:

We consider the case of a closed channel. This warrants

the fluid through the cross-section of the channel to be

zero and hence
Z 1

�1

v0ðxÞdx ¼ 0: ð14Þ

The symmetric basic flow for a ¼ 0� and Re=Gr ¼ 0

consists of three streams: two upstreams at the bound-

aries and a central downstream (Fig. 1(c)). When a is

non-zero, we observe a reduction in the basic velocity

from (12). When Re=Gr is non-zero the velocity profiles

are no longer symmetric. The downward movement of

the wall (Re=Gr < 0) is associated with the formation of

a boundary layer near the moving wall.

We consider the stability of the above basic state by

the method of small perturbations. Let us consider the

perturbed motion v0 þ v, T0 þ T , and p0 þ p, where v, T
and p are small unsteady perturbations, v0 ¼ v0k. The
perturbation in the velocity component vy is equal to

zero and the other components vx, vz, and perturbations

of T and p do not depend on y (so called plane pertur-

bations). Then Eqs. (5)–(7) for the above perturbed state

after linearization take the form:

ðo=otÞvþ Gr½ðv0 � rÞvþ ðv � rÞv0�
¼ �rp þr2vþ ð

�
� 1ÞjT � 2jg1T0T

� 3jg2T
2
0 T � 4jg3T

3
0 T

�
n; ð15Þ

ðo=otÞT þ Grðv0 � rÞT þ ðv � rÞT0 ¼ ð1=PrÞr2T ; ð16Þ

div v ¼ 0: ð17Þ

It is convenient to introduce the stream function Wðx; zÞ
as

vx ¼ �oW=oz; vz ¼ oW=ox: ð18Þ

We set

Wðx; z; tÞ ¼ /ðxÞ expð�kt þ ikzÞ;
T ðx; z; tÞ ¼ hðxÞ expð�kt þ ikzÞ;

ð19Þ

where / and h are the amplitudes of the normal per-

turbations, k is the wavenumber and k is a complex

eigenvalue. Substituting (19) in (15)–(17), we obtain the

amplitude equations

/ð4Þ � 2k2/ð2Þ þ k4/þ ikGr vð2Þ0 /
h

� v0ð/ð2Þ � k2/Þ
i

�
h
� ð� 1Þjhð1Þ þ 2jg1T0h

ð1Þ þ 2jg1T
ð1Þ
0 h

þ 3jg2T
2
0 hð1Þ þ 6jg2T0T

ð1Þ
0 hþ 4jg3T

3
0 hð1Þ þ 12jg3T

2
0 T

ð1Þ
0 h

i

� cosa�
�
� ð� 1Þjikhþ 2ikjg1T0hþ 3ikjg2T

2
0 h

þ 4ikjg3T
3
0 h

�
sina

¼ k k2/
�

�/ð2Þ
�
; ð20Þ

ð1=PrÞ hð2Þ
�

� k2h
�
þ ikGr T ð1Þ

0 /
�

� v0h
�
¼ �kh: ð21Þ

The velocity and temperature perturbations vanish at

the sidewalls and hence the boundary conditions are

/ð�1Þ ¼ 0; /ð1Þð�1Þ ¼ 0; hð�1Þ ¼ 0: ð22Þ

3. Method of solution

We solve the boundary value problem by the

spectral collocation method of Kolyshkin and Vai-

llancourt [16] for the solution of Orr–Sommerfeld

problem. We introduce the fundamental interpolation

polynomials

Pnðx;UÞ ¼
Xn

j¼1

pnjðxÞ/j;

Qnðx;UÞ ¼
Xn

j¼1

qnjðxÞ/j;

Snðx;UÞ ¼
Xn

j¼1

snjðxÞ/j;

Unðx;HÞ ¼
Xn

j¼1

pnjðxÞhj;

Vnðx;HÞ ¼
Xn

j¼1

qnjðxÞhj;

ð23Þ

where U ¼ ð/1; . . . ;/nÞ
T 2 Rn, H ¼ ðh1; . . . ; hnÞT 2 Rn,

/ðjÞ ¼ /ðxjÞ and hj ¼ hðxjÞ and
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pnjðxÞ ¼ TnðxÞ=ððx� xjÞT ð1Þ
n ðxjÞÞ;

qnjðxÞ ¼ pnjðxÞð1� x2Þ=ð1� x2j Þ;
snjðxÞ ¼ qnjðxÞð1� x2Þ=ð1� x2j Þ:

ð24Þ

Here TnðxÞ denotes the Chebyshev polynomial of the first

kind of degree n whose zeroes are xj ¼ cosðð2j� 1Þ
p=2nÞ; j ¼ 1; . . . ; n. One can easily verify that Snðx;UÞ
and Vnðx;HÞ satisfy the boundary conditions (22) for /
and h, respectively.

Substitution of (23) in (20) and (21) leads to the

system of equations

Xn

j¼1

/j sð4Þnj ðxÞ
h

þ a1ðxÞqð2Þnj ðxÞ þ a2ðxÞpnjðxÞ
i

þ
Xn

j¼1

hj a3ðxÞpð1Þnj ðxÞ
�h

þ a4ðxÞpnjðxÞ
�
cos a

þ a5ðxÞpnjðxÞ sin a
i

¼ 0; ð25Þ

Xn

j¼1

/jb1ðxÞpnjðxÞ þ
Xn

j¼1

hj qð2Þnj ðxÞ
h

þ b2ðxÞpnjðxÞ
i

¼ 0; ð26Þ

where

a1ðxÞ ¼ �2k2 � ikGrv0ðxÞ þ k;

a2ðxÞ ¼ ikGrvð2Þ0 ðxÞ þ ik3Grv0ðxÞ þ k4 � k2k;

a3ðxÞ ¼ ð�1Þj � 2jg1T0 � 3jg2T
2
0 � 4jg3T

3
0 ;

a4ðxÞ ¼ �2jg1T
ð1Þ
0 � 6jg2T0T

ð1Þ
0 � 12jg3T

2
0 T

ð1Þ
0 ;

a5ðxÞ ¼ ð�1Þjik � 2jikg1T0 � 3jikg2T
2
0 � 4jikg3T

3
0 ;

b1ðxÞ ¼ ikGrPrT ð1Þ
0

b2ðxÞ ¼ �k2 � ikGrPrv0 þ kPr

Thus, we obtain a finite dimensional eigenvalue problem

ðA� kBÞu ¼ 0, where u ¼ ð/1; . . . ;/n; h1; . . . ; hnÞ0.
The eigenvalues of the matrix produced by the

spectral method are determined by a complex QZ

method [17]. A computer code was written to implement

this using the algorithm of Golub and Van Loan [18].

The method is very stable and required computer time is

moderate. The advantages of the method are the nu-

merical results provide a global instability and no initial

guesses are required. The real parts of the eigenvalues

Rki, determine the stability of the flow. If Rki > 0 for all

i, the flow is stable. If Rki < 0 for at least one value of i,

the flow is unstable. The marginal stability curve cor-

responds to the case when one of the eigenvalues satisfies

Rk ¼ 0. The system depends on many parameters,

namely Gr, Re, a, Pr, gi ði ¼ 1; 2; 3Þ, k, and n. As the

interest is on the sidewall movement in an inclined

configuration, both q and h in gi are fixed as unity. To

locate an extremal point we proceed as follows. For

fixed values of the other parameters, we determine the

Grashof number GrðkÞ as a function of the wavenumber

k corresponding to the case Rk ¼ 0. Then the critical

Grashof number is found by setting Grc ¼ mink GrðkÞ.
The convergence of the numerical solution has been

checked by varying the number of collocation points n.

Table 1 shows the critical states for different combina-

tions. We noticed that at n ¼ 11 the 0.5% convergence

criterion is met. Further increase in n considerably in-

creases the cost. So we fixed n as 11 in our calculations.

Table 2 compares the critical states based on our code

for different values of Pr and j ¼ 0 with those of

Gershuni et al. [1]. They used approximating polyno-

mials of different lengths in their Galerkin’s method and

so their results differ slightly. Still we observe a good

agreement between the results at the same conditions

which provide a further check on the numerical accu-

racy.

4. Results and discussion

First of all let us deal with fluids having linear density

variation (j ¼ 0). The effect of Pr on the marginal

stability curve is shown in Fig. 2(a). For a low Pr ap-

proximation (i.e., at Pr ¼ 0:01), the neutral curve A has

a single minimum. Since the low Pr fluids are good

conductors of heat, they immediately dissipate the

temperature disturbances before the disruption of

buoyancy force to cause instability. Hence the instability

causing the single minimum by the unstable velocity

distribution is referred to as shear (S) mode. On the

other hand as Pr increases, the penetration depth of

temperature disturbances decreases, and hence the

Table 1

Critical Grashof number for different n (j¼ 1 and Pr¼ 12.97)

n a ¼ 0�, Re ¼ 0 a ¼ 30�, Re ¼ �25 a ¼ �60�, Re ¼ �10 a ¼ 5�, Re ¼ 5

6 121.68 161.29 139.33 292.14

7 197.50 404.00 163.70 321.75

8 164.27 270.97 157.76 275.95

9 157.92 316.72 159.36 268.96

10 154.12 351.40 159.23 262.05

11 153.73 350.43 159.25 261.35
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buoyant force becomes more concentrated resulting in

an instability. In Fig. 2(a) we see that the critical Gras-

hof number Grc is considerably lowered with a corre-

sponding shift towards the lower wavenumber region

even for Pr ¼ 1. Further increase in Pr results in the

development of a nose shaped piece, labelled as B, in

the curve in the lower wavenumber region. This converts

the neutral curve into two branches, having a local

minimum in each branch separated by a local maximum.

Hence the nose shaped part of neutral curve represents

the difference between full stability problem and the

Orr–Sommerfeld problem for the same velocity profiles.

Accordingly the marginal wavespeed becomes bimodal

as shown in Fig. 2(b). The wavespeed is measured in the

same units as the velocity of the base flow and is nor-

malized by the modulus of maximum velocity of base

flow: c ¼ ImðkÞ=kGrv0max, where k is a purely imaginary

eigenvalue and v0max is the absolute value of the maxi-

mum non-dimensional velocity. Perturbations in the

form of thermal running waves with comparatively high

phase velocity correspond to the nose shaped lower part,

and hence this branch is associated with thermal-buoy-

ant (TB) mode of instability [19]. So depending on Pr,

two modes of instability can occur: S-mode and TB-

mode.

We shall now investigate the effect of sidewall

movement of a vertical slot containing water (j ¼ 1,

Pr ¼ 12:97). The considerable distortion of the marginal

stability curve appearing with increasing Re is noticeable

in Fig. 3(a). The marginal curve has two branches

marked A and B corresponding to S- and TB-modes, as

discussed above. When Re becomes 5, another branch

develops in the marginal curve marked by C and blends

together smoothly with the other two branches. The

instability giving birth to this branch receiving energy

partly from the buoyant force and partly from the

mainstream velocity by the Reynolds stress is referred to

as interactive (I) mode. Then the absolute minimum of

these three branches decides the stability behaviour. The

corresponding marginal phase velocity is considerably

lowered with three distinct branches as shown in Fig.

3(c). When Re is increased further to 10, the dis-

turbances receive more energy by the action of Reynolds

stress between the up and downstream convective flows.

Hence the branch C elongates in the downward direc-

Fig. 2. (a) Marginal stability curves for j ¼ 0, a ¼ 0�, Re ¼ 0 varying Pr. (b) Marginal wavespeeds for j ¼ 0, a ¼ 0�, Re ¼ 0 varying Pr.

Table 2

Comparison of the present results (j ¼ 0; a ¼ 0�; Re ¼ 0) with

those of Gershuni et al. [1] (within parentheses)

Pr Grc kc

0.01 1690.75 2.06

(0) (1720) (2.05)

0.4 1213.53 1.65

(1219) (1.65)

1 730.32 1.37

(744) (1.38)

2 457.77 1.35

(470) (1.35)

3 348.59 1.34

(359) (1.35)

5 250.86 1.36

(259) (1.35)

10 165.26 1.36

(171) (1.38)

20 111.77 1.39

(115) (1.40)
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tion dominating branch B and hence decides the stability

behaviour. For further increase in Re, branch C disap-

pears and branch A begins to dominate (see Fig. 3(c)).

Ultimately the effect of upward movement of the side-

wall is to stabilize the basic flow up to Re ¼ 24 beyond

which the flow gets destabilized. But when the wall starts

moving in the downward direction, the situation is

completely different. Formation of a boundary layer on

the moving sidewall becomes prominent for higher

negative values of Re. This inhibits the development of

Reynolds stress and hence the source of energy to dis-

turbances is buoyant in nature. Thus decrease in the

value of Re is associated with TB-mode as shown in Fig.

3(b).

The stability boundary of convective motion in water

contained in a vertical slot is shown in (Re, Grc) plane
(Fig. 4(a)). The dashed line represents that of a fluid

with linear density variation. We observe that convec-

tion is stabilized for 0 < Re < 24, with a sharp increase

in Grc up to Re ¼ 8:4. This sharp increase in Grc occurs
while TB-mode remaining critical after competing with

I- or S-mode. For higher Re (Re > 24), the convective

motion is destabilized. Negative values of Re do not

have comparatively much influence on the stability of

the basic flow. However, lower negative values of

Re ð�20 > Re > 0Þ slightly destabilize the flow whereas

higher negative values start stabilizing. The critical

wavenumber kc corresponding to the secondary flow at

Fig. 3. (a) Marginal stability curves for j ¼ 1, Pr ¼ 12:97, a ¼ 0� varying Re ðReP 0Þ. (b) Marginal stability curves for j ¼ 1,

Pr ¼ 12:97, a ¼ 0� varying Re ðRe6 0Þ. (c) Marginal wavespeeds for j ¼ 1, Pr ¼ 12:97, a ¼ 0� varying Re.
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the neutral state is displayed in Fig. 4(b). The wave-

number decreases sharply for 0 < Re < 8:4 correspond-

ing to the sharp increase in Grc and then a jump occurs

at Re ¼ 8:4 shifting the wavenumber to some higher

value. This jump corresponds to the transition of ab-

solute minimum from TB- to I-mode as shown in Fig.

4(d). Physically this means a sudden change in the ver-

tical cell size. This is analogous to those arising in our

previous result [20]. Thus in general a jump in the

wavenumber corresponds to an abrupt transition of

global minimum from one branch of the neutral curve to

the neighboring one. And a sharp decrease in wave-

number before the jump indicates the emergence and

growth of a new branch in the neutral curve to which the

absolute minimum gets transferred immediately after the

jump. A more or less opposite behaviour is observed for

fluids with j ¼ 0. The dependence of the critical wave-

speed cc of the perturbation upon Re is shown in Fig.

4(c). As jRej increases from 0, the velocity of upward

moving perturbations decreases with a jump disconti-

nuity at Re ¼ 8:4. We observe that perturbations travel

downward for j ¼ 0.

Let us now concentrate on non-vertical slots. We

allowed a to vary as 15�, 30�, 45� and 60� in both di-

rections for investigating the effect of sidewall move-

ment. The critical Grashof number, wavenumber and

Fig. 4. Effect of sidewall movement in a vertical slot (j ¼ 1): (a) Grc against Re. (b) kc against Re. (c) cc against Re. (d) Marginal curves

exhibiting change in the critical mode.
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wavespeed against Re for positive angles of tilt are

shown in Fig. 5(a)–(c), respectively. In all cases, the ef-

fect of Re is to stabilize convection for Re < �20 and

06Re6 20. In general for positive values of Re, the flow

stabilizes up to a ¼ 30� and then starts destabilizing for

higher a. This shows somewhat a non-linear dependence

of the stability behaviour for positive values of Re. On

the other hand for negative values of Re, the basic state

is destabilized when a increases. When a becomes 15�,
the jump in kc is advanced to Re ¼ 6:8 which shows that

the Reynolds stress due to oppositely moving convective

patterns is increasing. When a is increased to 30�, jumps

in kc corresponding to the two sudden changes in the

directions of Grc at Re ¼ 3:8 and 16.6 are introduced.

These two jumps result because of the shifting of the

global minimum from the first branch (corresponding to

TB-mode) to the third (corresponding to S-mode) via

the second one (corresponding to I-mode) as shown in

Figs. 7(a) and (b). But only one jump is seen in kc for

higher values of a because of the disappearance of I-

mode branch as shown in Fig. 5(b). The corresponding

wavespeeds show an interesting result. When Re remains

positive and a becomes 30� or more, the travelling per-

turbations suddenly change their direction and move

with gravity. Reduction in wavespeed is clear for in-

creasing jRej. But no such direction-change is observed

in the case when Re < 0. Fig. 5 (d) shows a closer look at

the jumps occurring in wavespeed.

Fig. 5. Effect of sidewall movement in a positively inclined slot (j ¼ 1): (a) Grc against Re. (b) kc against Re. (c) and (d) cc against Re.
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Somewhat complicated behaviour occurs in (Grc, Re)
plane (Fig. 6(a)) for smaller values of jRej in the case of

negative tilt angles. Although we observe a complicated

feature in Grc, the gross effect shows the destabilizing

and stabilizing phenomena for positive and negative

values of Re, respectively, as a is increased. When the

sidewall is moving up, negative inclination produces a

non-linear effect on the mode-changing phenomenon,

i.e., the jump from TB- to I- or S-mode gets delayed as a
decreases up to )30� and then starts advancing. When

the sidewall is moving down, the critical S-mode is

completely replaced by I-mode. A competition occurs

between TB- and I-modes for negative values of Re

when a reaches )15�. Here we observe a sharp increase

in kc and then an immediate fall at Re ¼ �6:4. This

develops into a peak at Re ¼ �4 for a ¼ �30�. For

further decrease in a, the peak at a negative Re and the

jump at a positive Re become closer showing more

competition between TB, I and S modes. The marginal

curves for selected values of Re at a ¼ �45� display this

behaviour (see Fig. 7(c)). This shows a close interlocking

of the two different instability mechanisms namely

sidewall movement and tilt. The wavespeeds in Fig. 6(c)

and (d) show some jumps corresponding to those oc-

curring in kc. Here also the perturbation speed decreases

as the speed of sidewall starts increasing. Negative

wavespeeds are seen for larger tilt angles and Re < 0.

The effect of tilting the slot when the sidewall is moving

Fig. 6. Effect of sidewall movement in a negatively inclined slot (j ¼ 1): (a) Grc against Re. (b) kc against Re. (c) and (d) cc against Re.
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at a constant velocity is exhibited in Fig. 8. The positive

values of Re stabilizes the convective flow, whereas

higher negative values of Re stabilizes for a < 0 and

destabilizes for a > 0. The sharp increase in Grc for

Re ¼ �5 near a ¼ �30� is because of the emergence of I-

mode in the critical phenomenon, as seen in Fig. 6(b).

5. Conclusion

The onset of instability of the combined natural

forced convective flow in water contained in a slot is

greatly dependent on a and Re. The critical boundary

for water is more or less opposite in nature compared to

that of fluids with linear density variation. Upward

movement of the sidewall stabilizes convection until

Re ¼ 24 in the case of a vertical slot. On the other hand,

the birth of S-mode gets inhibited for higher negative

values of Re. The stability of the basic flow is found to

be a non-linear function of a reaching a maximum at

a ¼ 30� for Re > 0. In general destabilization is found

for increasing values of a and Re < 0. When a takes

negative values, somewhat complicated behaviour oc-

curs in Grc. In this case, we observe more competition

among the different modes causing instability for

�76Re6 10, accompanied by jumps in kc.

Fig. 7. Marginal curves for inclined slots (j ¼ 1): (a) a ¼ 30� and Re ¼ 3; 4. (b) a ¼ 30� and Re ¼ 16; 17. (c) a ¼ �45� and

Re ¼ �1; 7; 8.
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